Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene.

نویسندگان

  • Vinh Quang Dang
  • Do-Il Kim
  • Le Thai Duy
  • Bo-Yeong Kim
  • Byeong-Ung Hwang
  • Mi Jang
  • Kyung-Sik Shin
  • Sang-Woo Kim
  • Nae-Eung Lee
چکیده

Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertically aligned nanostructures based on Na-doped ZnO nanorods for wide band gap semiconductor memory applications.

Vertically aligned undoped ZnO nanotips, nanotubes and nanorods were synthesized on the top facets of Na-doped ZnO nanorods without catalytic assistance under different growth times in a chemical vapor deposition system. The growth mechanism is discussed. The Na-doped nanorods were grown on a ZnO seed layer on Si. The p-type conductivity of the Na-doped nanorods was studied by temperature-depen...

متن کامل

The improved piezoelectric properties of ZnO nanorods with oxygen plasma treatment on the single layer graphene coated polymer substrate

The step towards the fabrication of nanodevices with improved performance is of high demand; therefore in this study oxygen plasma treated ZnO nanorods based piezoelectric nanogenerator is developed on the single layer graphene coated PET flexible polymer substrate. ZnO nanorods on the single layer graphene are grown by hydrothermal growth method and the structural study is carried out by using...

متن کامل

Mechanical Characterization and Electrochemical Sensor Applications of Zinc Oxide Nanostructures

Nanotechnology is emerging to be one of the most important scientific disciplines that physics, chemistry and biology truly overlap with each other. Over the last two decades science and technology have witnessed tremendous improvement in the hope of unveiling the true secrets of the nature in molecular or atomic level. Today, the regime of nanometer is truly reached. ZnO is a promising materia...

متن کامل

Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation

We report the seed/catalyst-free growth of ZnO on multilayer graphene by thermal evaporation of Zn in the presence of O2 gas. The effects of substrate temperatures were studied. The changes of morphologies were very significant where the grown ZnO structures show three different structures, i.e., nanoclusters, nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. High-density ver...

متن کامل

Direct Growth of Vertically-oriented Graphene for Field-Effect Transistor Biosensor

A sensitive and selective field-effect transistor (FET) biosensor is demonstrated using vertically-oriented graphene (VG) sheets labeled with gold nanoparticle (NP)-antibody conjugates. VG sheets are directly grown on the sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method and function as the sensing channel. The protein detection is accomplished through measuring ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 24  شماره 

صفحات  -

تاریخ انتشار 2014